Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338090

RESUMEN

Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis. The ability of S. agalactiae to cause widespread mastitis relies on bacterial virulence factors. In this study, we detected 10 virulence determinants associated with mastitis pathogenicity using conventional PCR. The antimicrobial susceptibility of 100 S. agalactiae isolates from 13 Thai dairy herds was assessed using the Kirby-Bauer disk diffusion susceptibility test. All strains had at least three virulence factors responsible for invasion, adhesion, and infection (fbsB, bibA, and cfb, respectively). The predominant virulent profile of S. agalactiae strains revealed the presence of fbsA, fbsB, bibA, cfb, and cyl (n = 96). Most strains were sensitive to penicillin, ampicillin, amoxicillin-clavulanic acid, cefotaxime, ceftiofur, erythromycin, sulfamethoxazole-trimethoprim, and vancomycin. However, all strains were resistant to aminoglycosides, including kanamycin and gentamicin attributed to the unnecessary antimicrobial use. Furthermore, we identified seven multidrug resistant (MDR) S. agalactiae strains among four dairy herds, of which, two were vancomycin resistant. Our study provides profiles for virulence factors and antimicrobial susceptibility, which are beneficial for the clinical monitoring, prevention, and control of bovine mastitis in dairy cattle in Thailand. Moreover, we emphasize the need for awareness regarding the judicious use of antimicrobials on dairy farms.

2.
Front Vet Sci ; 10: 1250436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026633

RESUMEN

Introduction: Streptococcus agalactiae is a highly contagious pathogen that causes bovine mastitis, leading to significant economic losses. This study aimed to (1) identify and characterize S. agalactiae strains responsible for bovine mastitis by examining their phenotypic and genotypic characteristics in Thai dairy-intensive farming areas and (2) determine their susceptibility profiles to antimicrobial agents. Material and methods: In total, 100 S. agalactiae isolates obtained from clinical and subclinical mastitis cases from 13 dairy herds located in the central region of Thailand were examined. To confirm the identity of the bacterial pathogens, conventional microbiological procedures recommended by the National Mastitis Council (NMC) and the VITEK® 2 system were employed. Results: All 100 isolates were successfully identified as S. agalactiae using the NMC procedure, whereas 94 isolates were identified as S. agalactiae using the VITEK® 2 system. Finally, the S. agalactiae-specific gene dlt S was identified in all the examined isolates using polymerase chain reaction. Capsular polysaccharide (CPS) typing revealed that all strains belonged to CPS type Ia. Multilocus sequence typing identified 33 selected isolates as sequence type 103. Random amplified polymorphic DNA (RAPD) typing yielded 43 RAPD types, with 6 RAPD clusters identified. These results demonstrated a high level of genetic diversity among S. agalactiae within the studied herds. RAPD analysis suggested that specific S. agalactiae strains could persist in dairy farms for 2-12 months. Furthermore, antimicrobial susceptibility testing was performed using the broth microdilution method. Most strains demonstrated susceptibility to ampicillin, penicillin, penicillin/novobiocin, cephalothin, oxacillin, ceftiofur, and erythromycin. Discussion: This study revealed the phenotypic and genotypic characteristics of S. agalactiae isolates responsible for bovine mastitis in the central region of Thailand. The rapid identification of S. agalactiae and application of molecular typing methods can provide valuable epidemiological information regarding S. agalactiae causing mastitis in dairy farms. The antimicrobial susceptibility of S. agalactiae indicates that antimicrobial treatment for control and eradication could be a successful protocol. Our findings revealed that a single clonal strain of S. agalactiae affected the 13 studied farms. Further research is needed to explore the feasibility of vaccine development and application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...